Phosphate assimilation in Rhizobium (Sinorhizobium) meliloti: identification of a pit-like gene.
نویسندگان
چکیده
Rhizobium meliloti mutants defective in the phoCDET-encoded phosphate transport system form root nodules on alfalfa plants that fail to fix nitrogen (Fix-). We have previously reported that two classes of second-site mutations can suppress the Fix- phenotype of phoCDET mutants to Fix+. Here we show that one of these suppressor loci (sfx1) contains two genes, orfA and pit, which appear to form an operon transcribed in the order orfA-pit. The Pit protein is homologous to various phosphate transporters, and we present evidence that three suppressor mutations arose from a single thymidine deletion in a hepta-thymidine sequence centered 54 nucleotides upstream of the orfA transcription start site. This mutation increased the level of orfA-pit transcription. These data, together with previous biochemical evidence, show that the orfA-pit genes encode a Pi transport system that is expressed in wild-type cells grown with excess Pi but repressed in cells under conditions of Pi limitation. In phoCDET mutant cells, orfA-pit expression is repressed, but this repression is alleviated by the second-site suppressor mutations. Suppression increases orfA-pit expression compensating for the deficiencies in phosphate assimilation and symbiosis of the phoCDET mutants.
منابع مشابه
Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions.
We report the identification and cloning of an ntrA-like (glnF rpoN) gene of Rhizobium meliloti and show that the R. meliloti ntrA product (NtrA) is required for C4-dicarboxylate transport as well as for nitrate assimilation and symbiotic nitrogen fixation. DNA sequence analysis showed that R. meliloti NtrA is 38% homologous with Klebsiella pneumoniae NtrA. Subcloning and complementation analys...
متن کاملCharacterization of the Rhizobium (Sinorhizobium) meliloti high- and low-affinity phosphate uptake systems.
Genetic studies have suggested that Rhizobium (Sinorhizobium) meliloti contains two distinct phosphate (Pi) transport systems, encoded by the phoCDET genes and the orfA-pit genes, respectively. Here we present data which show that the ABC-type PhoCDET system has a high affinity for Pi (Km, 0.2 microM) and that Pi uptake by this system is severely inhibited by phosphonates. This high-affinity up...
متن کاملRegulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti.
Sinorhizobium meliloti (Rhizobium meliloti) 2011 has the ability to produce the two acidic exopolysaccharides succinoglycan (EPS I) and galactoglucan (EPS II). EPS I is a branched heteropolysaccharide composed of octasaccharide repeating units, whereas EPS II is a linear heteropolysaccharide consisting of disaccharide subunits. The exo-exs and exp gene clusters are involved in the biosynthesis ...
متن کاملAn AraC-like transcriptional activator is required for induction of genes needed for alpha-galactoside utilization in Sinorhizobium meliloti.
The nodulating bacterium Sinorhizobium meliloti can utilize alpha-galactosides like melibiose and raffinose as sole sources of carbon and energy. We show that this utilization requires an AraC-like transcriptional activator, AgpT. When agpT was inactivated, Rhizobium meliloti could not utilize alpha-galactosides or induce genes required for transport and catabolism of these sugars. The agpT gen...
متن کاملReduction of adenosine-5'-phosphosulfate instead of 3'-phosphoadenosine-5'-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae.
We have cloned and sequenced three genes from Rhizobium meliloti (Sinorhizobium meliloti) that are involved in sulfate activation for cysteine biosynthesis. Two of the genes display homology to the Escherichia coli cysDN genes, which code for an ATP sulfurylase (EC 2.7.7.4). The third gene has homology to the E. coli cysH gene, a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase (EC 1.8.99...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 180 16 شماره
صفحات -
تاریخ انتشار 1998